p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.20D8, C16⋊3C4⋊9C2, C16⋊4C4⋊12C2, (C2×C8).179D4, (C2×C4).115D8, C8.74(C4○D4), C22⋊C16.7C2, C2.Q32⋊13C2, C2.16(C4○D16), (C2×C16).12C22, (C2×C8).537C23, C8.18D4.9C2, (C22×C4).357D4, C22.123(C2×D8), C2.D8.22C22, C2.19(Q32⋊C2), C4.19(C8.C22), (C2×Q16).12C22, (C22×C8).175C22, C23.25D4.5C2, C4.44(C22.D4), C2.17(C22.D8), (C2×C4).805(C2×D4), SmallGroup(128,969)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.20D8
G = < a,b,c,d,e | a2=b2=c2=1, d8=e2=c, dad-1=ab=ba, ac=ca, eae-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd7 >
Subgroups: 148 in 66 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, Q8, C23, C16, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C2×Q8, Q8⋊C4, C4.Q8, C2.D8, C2×C16, C42⋊C2, C22⋊Q8, C22×C8, C2×Q16, C22⋊C16, C2.Q32, C16⋊3C4, C16⋊4C4, C23.25D4, C8.18D4, C23.20D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C22.D4, C2×D8, C8.C22, C22.D8, C4○D16, Q32⋊C2, C23.20D8
Character table of C23.20D8
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | -2i | 2i | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 2i | -2i | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√-2 | √-2 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | -ζ165+ζ163 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from C4○D16 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √-2 | -√-2 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165-ζ163 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from C4○D16 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √-2 | -√-2 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ167+ζ16 | ζ165+ζ163 | -ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from C4○D16 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√-2 | √-2 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ167+ζ16 | ζ165+ζ163 | ζ165-ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from C4○D16 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √-2 | -√-2 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165+ζ163 | ζ1615+ζ169 | ζ167-ζ16 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from C4○D16 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √-2 | -√-2 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | -ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from C4○D16 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√-2 | √-2 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | ζ167-ζ16 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from C4○D16 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√-2 | √-2 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ165+ζ163 | ζ1615+ζ169 | -ζ167+ζ16 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from C4○D16 |
ρ27 | 4 | -4 | -4 | 4 | 0 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ28 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
ρ29 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
(2 56)(4 58)(6 60)(8 62)(10 64)(12 50)(14 52)(16 54)(17 39)(18 26)(19 41)(20 28)(21 43)(22 30)(23 45)(24 32)(25 47)(27 33)(29 35)(31 37)(34 42)(36 44)(38 46)(40 48)
(1 55)(2 56)(3 57)(4 58)(5 59)(6 60)(7 61)(8 62)(9 63)(10 64)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 47)(18 48)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 39)(26 40)(27 41)(28 42)(29 43)(30 44)(31 45)(32 46)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 45 9 37)(2 22 10 30)(3 43 11 35)(4 20 12 28)(5 41 13 33)(6 18 14 26)(7 39 15 47)(8 32 16 24)(17 61 25 53)(19 59 27 51)(21 57 29 49)(23 55 31 63)(34 50 42 58)(36 64 44 56)(38 62 46 54)(40 60 48 52)
G:=sub<Sym(64)| (2,56)(4,58)(6,60)(8,62)(10,64)(12,50)(14,52)(16,54)(17,39)(18,26)(19,41)(20,28)(21,43)(22,30)(23,45)(24,32)(25,47)(27,33)(29,35)(31,37)(34,42)(36,44)(38,46)(40,48), (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,63)(10,64)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,47)(18,48)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,45,9,37)(2,22,10,30)(3,43,11,35)(4,20,12,28)(5,41,13,33)(6,18,14,26)(7,39,15,47)(8,32,16,24)(17,61,25,53)(19,59,27,51)(21,57,29,49)(23,55,31,63)(34,50,42,58)(36,64,44,56)(38,62,46,54)(40,60,48,52)>;
G:=Group( (2,56)(4,58)(6,60)(8,62)(10,64)(12,50)(14,52)(16,54)(17,39)(18,26)(19,41)(20,28)(21,43)(22,30)(23,45)(24,32)(25,47)(27,33)(29,35)(31,37)(34,42)(36,44)(38,46)(40,48), (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,63)(10,64)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,47)(18,48)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,39)(26,40)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,45,9,37)(2,22,10,30)(3,43,11,35)(4,20,12,28)(5,41,13,33)(6,18,14,26)(7,39,15,47)(8,32,16,24)(17,61,25,53)(19,59,27,51)(21,57,29,49)(23,55,31,63)(34,50,42,58)(36,64,44,56)(38,62,46,54)(40,60,48,52) );
G=PermutationGroup([[(2,56),(4,58),(6,60),(8,62),(10,64),(12,50),(14,52),(16,54),(17,39),(18,26),(19,41),(20,28),(21,43),(22,30),(23,45),(24,32),(25,47),(27,33),(29,35),(31,37),(34,42),(36,44),(38,46),(40,48)], [(1,55),(2,56),(3,57),(4,58),(5,59),(6,60),(7,61),(8,62),(9,63),(10,64),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,47),(18,48),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,39),(26,40),(27,41),(28,42),(29,43),(30,44),(31,45),(32,46)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,45,9,37),(2,22,10,30),(3,43,11,35),(4,20,12,28),(5,41,13,33),(6,18,14,26),(7,39,15,47),(8,32,16,24),(17,61,25,53),(19,59,27,51),(21,57,29,49),(23,55,31,63),(34,50,42,58),(36,64,44,56),(38,62,46,54),(40,60,48,52)]])
Matrix representation of C23.20D8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
1 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
13 | 8 | 0 | 0 |
13 | 4 | 0 | 0 |
0 | 0 | 10 | 0 |
0 | 0 | 0 | 5 |
1 | 15 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 5 |
0 | 0 | 10 | 0 |
G:=sub<GL(4,GF(17))| [1,1,0,0,0,16,0,0,0,0,1,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[13,13,0,0,8,4,0,0,0,0,10,0,0,0,0,5],[1,0,0,0,15,16,0,0,0,0,0,10,0,0,5,0] >;
C23.20D8 in GAP, Magma, Sage, TeX
C_2^3._{20}D_8
% in TeX
G:=Group("C2^3.20D8");
// GroupNames label
G:=SmallGroup(128,969);
// by ID
G=gap.SmallGroup(128,969);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,448,141,456,422,58,1684,438,242,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^8=e^2=c,d*a*d^-1=a*b=b*a,a*c=c*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^7>;
// generators/relations
Export